
38

Table of Contents

DECUS ET TUTAMEN . 1

Subroutines . 1

TYPTEX . 2

Comments . 2

JMS vs JMP . 3

Raw numbers . 3

TYPTEX, 0 . 3

TAD I TYPTEX . 4

ISZ TYPTEX . 4

SNA . 4

JMS TYPE . 4

JMP TYPTEX+1 . 4

Loop Analysis . 5

JMP I TYPTEX . 5

TYPE . 5

NOP . 6

JMP .+3 . 6

TLS . 6

CLA, DCA, and Clues to the NOP Mystery 6

Second Time Lucky 7

TSF . 7

JMP .-1 . 7

The Trouble With TSF 7

PDP-8 Instructions . 8

Memory-addressing Instructions 8

IOT . 8

OPR . 9

TYPTEX, Redux . 10

Locals, args, and return address 11

Loop over TYPE . 11

PAL . 11

Installation . 12

Starting Your Project 12

The PAGE Directive 13

A Label, By Itself . 13

Semicolons . 13

EOF . 13

Build and Check . 13

Debug . 14

Run . 14

PRINTD . 14

Locals and arguments 15

Setting up locals . 15

Dirty Tricks . 16

Printing the first digit 16

Printing the Second Digit 17

Printing the rest of the digits. 18

1

Review . 18

Inline Arguments . 18

Copying Words . 19

Skip a JMP . 19

Negative Loop Index 19

Self-modifying Code 19

PRINT8 . 19

RAL CLL . 20

RAL/RTL . 21

AND . 21

PA CK . 21

Purpose . 23

PCKCNT . 23

Arguments . 23

Autoindexing . 24

Shift Left . 24

Shift Right . 25

Bitwise Operations . 25

The Third Character 25

Buffer Limits . 26

UNPSGL . 26

Arguments . 28

Underflow Check . 28

JMS UNPINI . 29

Unpacking Character One 30

Unpacking and Reassembling Character 2 30

Unpacking Character 3 30

Preparing to Return Single Characters 31

JMP UNPGET . 31

Second Call . 31

Third Call . 32

Fourth Character . 32

Buffer Empty . 32

PA CKB . 33

Parameters . 34

Memory . 34

Pack Switch . 35

First Character . 36

Second Character . 36

Third Character . 36

Empty Buffers . 37

UNPACK . 37

2

Cooking for the PDP-12

At the Medical Biological Laboratory I was responsible for the Electronics De-
partment, serving all other departments. Early computers of the DIGITAL
PDP8 family prompted me to study computer operating systems and to set
down the design parameters for modular design. Floor Anthoni,
http://www.seafriends.org.nz/fcl/intro.htm#floor

DECUS ET TUTAMEN

[IMAGE: Title page for The PDP-8 Cookbook, Volume 1]

Floor Anthoni“Born Johannes Floris Anthoni, nicknamed Floor (these names are an An-
thoni family tradition, bestowed on the eldest son)”
finished out his Dutch military service in the 1960s with a stint at the Dutch national de-
fence research organisation, and stayed there for 10 years. While he worked there, he
compiled a number of examples of good modular PDP-8 assembler code.

In early 1972, he asked DEC User Society members to submit code examples for him to
collate and publish:

In programming the PDP8 computer. I have experienced the usefulness of
program modularity at the assembly level. The basic modules are, in effect,
subroutines that perform a certain function, and that have been programmed
in such a way, that they can be used as “recipies” in a cookbook. When these
“recipies” are being sent to a central editor, and published regularly, they will
accumulate experience into a common module library, THE PDP8 COOK-
BOOK, available to others.

In 1973 he published his first set of example codeAll of which were submitted by re-
searchers at Dutch laboratories.
as DECUS document No. 8-602A, and reproduced his call for submissions in the Intro-
duction.

Subroutines

The subroutine jump certainly is the most powerful instruction of any com-
puter. It enables the programmer to avoid duplication of code, and to build
hierarchical structures of software intelligence, increasing the semantic power
of each free location in core. Floor Anthoni, The Subroutine and its Use, page 2
of The PDP-8 Cookbook.

The PDP-8And thus, the PDP-12, which is both a PDP-8 and a LINC processor in one cab-
inet.
has a primitive form of subroutine call built right into its very tiny instruction set. There
is no support for recursion, and programmers are required to manage by hand how each
subroutine will pass information in and out. To address this, Floor decided to set some
standards:

1

http://www.seafriends.org.nz/fcl/intro.htm#floor
https://en.wikipedia.org/wiki/DECUS

When only one parameter needs to be transferred, use the ACCUMULATOR.
The LINK can be used as additional YES or NO information, although it is, in
general not frequently used. The use of other registers, like the MULTI-

PLIER-QUOTIENT register, must be strongly dissuaded, because the module
will then not be able to run on many machine configurations.

More information can be transferred as arguments, following the JMS instruc-
tion. This is especially useful for parameters that can be set at assembly time,
or that need not to change very often. Use the AC for frequently changing in-
formation. A common information area in page 0 can also be used. This is es-
pecially useful when those parameters need to be accessed by many modules.

[IMAGE: Accumulator and Link]Modern practice is to call the least-significant bit “0”
and count up as we move left. For some reason, Digital always counted in the other di-
rection. Take care when interpreting bit numbers described in DEC manuals!

We will investigate the details of some of these approaches later on in this document.
Let’s jump right in.

TYPTEX

Floor himself wrote our first example, which we’ll use to introduce some PDP-8 op-
codes.We’ll introduce instructions as they come, but if you’re hoping to have a reference
to hand we recommend the 1975 Introduction to Programming PDP-8 Family Computers
and the 1973 PDP-12 Reference Manual
We’ll break it down into pieces as we go, but to start with here’s the entire listing.I have
written some syntax highlighting rules that should cause code examples to appear here
with font styling applied.
Comments are in italics, PDP-8 instructions and PAL operators are bold, assembler direc-
tives and labels are underlined, and unknown opcodes (which may or may not be errors)
are in reverse video.

/001 TYPE THE CHARACTERS FOLLOWING THE JMS INSTR.

/TERMINATOR IS A ZERO.

/

/ JMS TYPTEX /TYPE "ABC"

/ 301 /"A"

/ 302 /"B"

/ 303 /"C"

/ 0 /TERMINATOR

/ RETURN /AC=0

TYPTEX, 0

TAD I TYPTEX /GET CHAR.

ISZ TYPTEX

SNA /ZERO?

JMP I TYPTEX /YES,JMP TO NEXT LOC.

JMS TYPE /NO,TYPE

JMP TYPTEX+1

Comments

In PAL, the standard PDP-8 assembler, everything following a / is a comment. Floor be-
gan this section with the entry number (001) and a brief description of how to use this
subroutine. Following that, he gave some example codeComplete with explanatory com-
ments-within-comments!

2

https://archive.org/details/bitsavers_decpdp8hanntrPgm75_18688946
https://archive.org/details/bitsavers_decpdp12DEReferenceManualOct73_15810636
pal.xml

so you can see how this might be used:

1. Use the JMS instruction to call TYPTEX.

2. Put the characters you wish to type out after this instruction in your code.

3. When you do not wish to print any more characters, insert a 0 in your code.

4. The example also mentions that the ACCUMULATORAC for short.
will be set to 0 when TYPTEX returns.

So let’s start with each of these parts in turn:

JMS vs JMP

The JMS instruction stands for “JuMp to Subroutine”. It takes one argument, which in
PAL is most likely a label that the assembler will translate into the appropriate address
where the code for the subroutine can be found.

JMS then does two things:

1. It writes the address of the instruction after itself into the location you pass to it.

2. It then causes the computer to run the next instruction after the address of the sub-
routine you gave it.

What this means is that all subroutines on the PDP-8 begin not with code, but with a re-
turn address. When your subroutine is finished, you can use the JMP opcode to JuMP
back to the code that called it and resume normal operation.

[IMAGE: punched paper tape]

Raw numbers

You’re likely familiar with higher-level programming languages where variables and
code are clearly marked out. But when writing PAL assembler, we often insert raw num-
bers into the stream of instruction words.

Since the PDP-8 is a 12-bit machine with binary switches on the front, programmers
tended to think of values in groups of four octal digits. PAL defaults to using octal nota-
tion for all raw numbers, and you can leave off any leading zeroes.

So how do we get that 301 is "A"? If you look at your ASCII table, you should see that A
is listed as 101 in octal. But the difference between 1 and 3 in base 8 is the flipping of a
single bit, so this is effectively an ASCII A with the high bit set.Introduction to Program-
ming PDP-8 Family Computers says:
Channel 8 is normally designated for parity check. The Teletype units used with PDP-8 series
computers do not generate parity, and Channel 8 is always punched.

So we insert the values for A, B, and C into the instruction stream with the high bit set on
each, and then the 0 that we were informed would indicate the end of the string to be
printed.

But that leaves an interesting question: wouldn’t the TYPTEX subroutine JMP back to the
location after we called it, which is data rather than code? Shouldn’t that cause bizarre
unpredictable behaviour? To answer that, we need to look at the subroutine code itself.

[IMAGE: Cores]

3

TYPTEX, 0

The very first part of the subroutine is the label, which gives a name to the routine’s loca-
tion in core.An archaic term for RAM: the PDP-8’s memory was made of tiny ferromag-
netic rings called “cores” long before semiconductor RAM was available. Magnetic core
memory has the advantage that it provides long-term storage long after the power is shut
off.
Everywhere we put TYPTEX in as a symbol, PAL will replace that with the real address in
whatever format is necessary.

And just as with the arguments that followed the JMS when we tried to use this subrou-
tine, we’ve just put a raw 0 there. That is simply a placeholder for the return value that
JMS will insert when this routine is called.

TAD I TYPTEX

The very first instruction loads data into the ACCUMULATORAgain, also called AC

, and it does this via Two’s-complement ADdition.For more information on two’s comple-
ment numbers, take a look at this video from the University of Nottingham.
This means that we probably should have ensured the ACCUMULATOR was zero first.

So what does it load? Well, you can see that it’s doing something with TYPTEX, which is
the location that holds the return address for us to JMP back to. The I indicates that it is
reading that address in memory-indirect mode. This means that it will use the address
stored in TYPTEX to load the value to use.

Put another way, TYPTEX will be used as a pointer to the actual word in memory. At the
start of our example invocation, that means it will load the octal 301 value that repre-
sents the A and add it to the ACCUMULATOR(AC)
.

So it seems we have loaded our first argument! But using the same value for data and the
return address still seems wrong, doesn’t it? Well let’s proceed.

ISZ TYPTEX

Once we’ve loaded the A, we run the “Increment and Skip if Zero” instruction. Since we
don’t expect these addresses to overflow back to zeroAt least, PAL would have done a
very bad job if they do!
, this can just be taken as incrementing TYPTEX.

So now we have read the value at the return pointer, and incremented that pointer to the
next word. If we keep this up, we should move past all of the data and back into code!

SNA

The SNA instruction is one of the “microcoded”Not microcoded in the modern sense, as
in a CPU that runs an even tinier code engine inside, but rather an instruction where in-
stead of an operand it takes combinations of bits to join circuits together inside the CPU
to generate a composite operation.
OPR instructions that work only on the registers, and it stands for “Skip on Non-zero Ac-
cumulator”. Since our AC contains octal 301, that is non-zero, and we skip the next in-
struction. So let’s look at the one after it.

4

https://youtu.be/lKTsv6iVxV4

JMS TYPE

Since we skipped the previous instruction, we now JMS to a subroutine called TYPE,
which we will look at in the next chapter. We don’t need to know too much about how it
works now, but we can assume from the rest of TYPTEX that it prints whatever character
is in AC and clears AC to 0 before returning.

So we’ve just printed the A, but how do we get to the B from here?

JMP TYPTEX+1

Since the TYPTEX label points to the address of the combined argument pointer/return
address word, we can re-start the subroutine by JMPing to the address immediately after
that. So let’s look at each loop now and take particular interest in that SNA instruction.

Loop Analysis

So here are the iterations through TYPTEX for the example invocation the comments:

1. AC loaded with "A", which isn’t zero so SNA skips to JMS TYPE and it is printed.

2. AC loaded with "B", which isn’t zero so it gets printed.

3. AC loaded with "C", which isn’t zero so it gets printed.

4. AC loaded with 0, which is zero, so SNA doesn’t skip.

So what is the instruction we kept skipping?

JMP I TYPTEX

Every time we’ve consumed an argument, we’ve incremented the address stored at TYP-
TEX, so that it pointed to the next location in the example code. Well by now since we’ve
consumed the 0, we’ve run out of the non-code data in that section of the program, and
can return back to it by doing a memory-indirect JMP to it.

So as a reminder, this means “Load the number at TYPTEX, and then jump to the instruc-
tion stored at that number.”

So now we’ve printed each of the letter arguments, stopped at 0, and returned with a
clear AC. Sounds great!

But now, how did that TYPE function work?

TYPE

/002 TELETYPE TYPE ROUTINE

/INITIALIZES WHEN ENTERED FOR FIRST TIME.

/NOT RESTARTABLE !

/

/ TAD CHARACTER

/ JMS TYPE

/ RETURN /AC=0

NOP

TYPE, 0

JMP .+3 /OVERLAID BY "NOP"

TSF

JMP .-1

TLS

CLA

5

TAD TYPE-1

DCA TYPE+1

JMP I TYPE

This seems to have a simpler set of instructions for use in the comments:

1. Load a character into AC

2. JMS to this routine

3. AC will be zero when we return

So let’s start looking at the code.

NOP

This is an oddity. For a start, NOP is the “no-operation” instruction.Sometimes written
“NOOP”.
It’s implemented in nearly all computer architectures, and it’s significant for the fact that
it does...exactly nothing. When the CPU hits a NOP, it will waste a bit of time fetching
and decoding the instruction, but it then just skips ahead to the next instruction.

As a second oddity, this do-nothing instruction has been placed before the function we
wish to call, making it a useless opcode at a location we don’t expect to execute.

Let’s remember this and move on to the next bit.

JMP .+3

After setting up the traditional 0 placeholder for TYPE’s return address, we see a new
trick that PAL lets us do.

The symbol . refers to the address of the current instruction, so we can do basic arith-
metic on that to refer to memory addresses a short fixed distance away. In this case,
we’re skipping ahead three instructions. We’ll need to puzzle out why,This sort of quick
arithmetic isn’t always clear to the reader, and there’s no hint for the reasoning behind
those addresses, so it’s often better to use explicit labels on the instructions you want to
jump to. However, Floor expressed a concern in his standards document that adding too
many symbols increases the chance that labels will appear twice, crashing PAL. With that
in mind, this approach is understandable.
so let’s jump ahead, but first let’s think about that comment:

/OVERLAID BY "NOP"

The puzzles are compounding. A do-nothing instruction in a never-runs part of memory
is expected to “overlay” this JMP somehow? Let’s set that aside and press on.

TLS

Skipping ahead three instructions, we find that we’re in one of the IOT opcodes, which
concern themselves with device I/O.IOT stands for In-Out Transfer.
In this case, the PDP-12 Reference Manual describes the effect of TLS as:

Clear the printer flag, transfer the contents of the AC into the printer buffer
register, select and print the character. (The flag is raised when the action is
completed.)

So this instruction will set some “printer flag” bit to 0 somewhere in the hardware, print
out whatever is in AC, and then set that “printer flag” to 1 to let anyone who’s interested
know that the printer is ready to print another character. So I guess we’ve just printed

6

our character!

There’s a lot of code in here for a subroutine that seems to mostly be handled by this one
instruction. What does the rest of this thing do?

CLA, DCA, and Clues to the NOP Mystery

CLA

TAD TYPE-1

DCA TYPE+1

JMP I TYPE

The first three instructions are a fairly common idiom, with two new instructions for you
to learn:

1. CLA is simply “CLear Accumulator”, which sets AC to 0.

2. Then we use TAD to add the value at TYPE-1 to the empty AC. This is that NOP in-
struction.

3. DCA is “Deposit and Clear Accumulator”, which we use to write that NOP instruction
to TYPE+1.

Aha! So this copies that NOP from the pre-subroutine address over the JMP .+3 instruc-
tion. Now at least we see what the comment meant by /OVERLAID BY "NOP". But
why? We do this and then return from TYPE using the JMP I instruction as before.

Second Time Lucky

let’s take a look at what the subroutine looks like now, and see if we learn anything by
tracing it again:

NOP

TYPE, 0

NOP /OVERLAID BY "NOP"

TSF

JMP .-1

TLS

CLA

TAD TYPE-1

DCA TYPE+1

JMP I TYPE

So now when we call our function with the second character, it hits that NOP instead of
JMP .+3, and just glides down to the next instruction, which is one we haven’t executed
yet.

TSF

This is another IOT instruction for the printer, and the PDP-12 Reference Manual de-
scribes it as:

Skip the next instruction if the printer flag is set to 1.

If you recall, the TLS instruction we ran last time set that flag to 0 while it was busy
printing, and set it to 1 to show that it was done. Let’s assume that our program is ex-
tremely fast right now, and gets back here while all the motors and gears are still turning
on our printer, and the flag is still 0. That means we don’t skip, and just run the next

7

instruction.

JMP .-1

There’s the relative-jump arithmetic again. This just jumps back to that TSF instruction
every time until it’s skipped. So these three instructions together create a “print when
ready” macro:

TSF

JMP .-1

TLS

So why didn’t we do this in the first place? Why spend all of this memory and time
copying NOP instructions around and doing funny JMPs?

The Trouble With TSF

The problem with this printer flag is that we only know it’s correct if we’ve already
printed at least one character after turning on all of our equipment. When the hardware
first powers on, it’s set to 0 by default. So this is what the comments meant at the start:

/002 TELETYPE TYPE ROUTINE

/INITIALIZES WHEN ENTERED FOR FIRST TIME.

/NOT RESTARTABLE !

We needed to at least try to print a character the first time, or that TSF/JMP .-1 loop
would spin forever.

[IMAGE: Memory Page Layout]

PDP-8 Instructions

[IMAGE: Instructions]

So far we’ve encountered seven of the eight opcodes on the PDP-8. These are represented
in memory as the most significant three bits of an instruction word.There is a pleasing
sort of symmetry to this: Two instructions read from memory, two write to memory, two
modify the program counter, and two don’t touch memory at all.

The eight PDP-8 opcodes.

Instruction Opcode Name Cycle count

AND 0nnn logical AND 2
TAD 1nnn 2’s complement

add
2

ISZ 2nnn increment and
skip if zero

2

DCA 3nnn deposit and clear
AC

2

JMS 4nnn jump to subrou-
tine

2

JMP 5nnn jump 1
IOT 6nnn in-out transfer 2 1/2
OPR 7nnn operate 1

8

Memory-addressing Instructions

The first six instructions use the other nine bits to indicate a memory location, but in a
limited way. The bottom seven bits are the location of the operand within a “page” of
memory, which is a region of only 128 words. The eighth bit determines whether the ad-
dress is in the “current” page, where the code currently lives, or on page zero.Since you
can operate on values in the zero page from any code, it tends to be a sort of “global vari-
able area”. Floor explicitly tries to avoid using it, for the same reason he avoids adding
too many labels: he doesn’t want to conflict with the rest of your code.

So far, we’re able to directly address only 256 words out of the 4096 you can address with
a 12-bit pointer. So what gives? Well that’s where the memory-indirect bit comes in. If
it’s set highRemember that’s done with the I as in JMP I TYPE.
then we use that word as a full 12-bit pointer to the actual word we want to load and use.

IOT

[IMAGE: The IOT instruction, illustrated.]

The IOT instructions are more specific. The middle six bits indicate which device to con-
nect to, and the last three bits form an instruction to send to that device.

As an example, we saw in TYPE that device 04 was the teletype printer. Here’s what the
PDP-12 Reference Manual says in full about the use of the last three bits:Note that TLS is
just the logical outcome of setting both the TCF and TPC bits.

[IMAGE: Printer IOT Instructions]

Teletype Printer/Punch Instructions

Sequence Mnemonic Octal Effect

1 TSF 6041 Skip the next instruction if the printer flag is set
to 1.

2 TCF 6042 Clear the printer flag.
3 TPC 6044 Load the printer buffer register with the contents

of the AC, select and print the character. (The flag
is raised when the action is completed.)

2,3 TLS 6046 Clear the printer flag, transfer the contents of the
AC into the printer buffer register, select and
print the character. (The flag is raised when the
action is completed.)

For comparison, take a look at the keyboard input side of the teletype, which is device
03.

[IMAGE: Keyboard IOT Instructions]

Teletype Keyboard/Reader Instructions

Sequence Mnemonic Octal Effect

1 KSF 6031 Skip the next instruction when the keyboard buf-
fer register is loaded with an ASCII symbol
(causing the keyboard flag to be raised).

2 KCC 6032 Clear AC, clear keyboard flag.
3 KRS 6034 Transfer the contents of the keyboard buffer into

the AC.

9

2,3 KRB 6036 Transfer the contents of the keyboard buffer into
the AC, clear the keyboard flag.

OPR

[IMAGE: Group 1 OPR Instructions]

The OPeRate instructions also use the lower nine bits to indicate actions you can combine.
None of these operations affect memory, although several will skip the next instruction if
certain conditions are met. All of these operations take one cycle, but the component
sub-operations have an implicit order. Of the nine remaining bits, the most significant
one switches between “Group 1” and “Group 2” operations.

[IMAGE: RAR] [IMAGE: RTR]

Group 1 OPR Micro-instructions

Mnemonic Opcode Name Event Time

NOP 7000 No Operation 0
CLA 7200 clear AC 1
CLL 7100 clear LINK 1
CMA 7040 complement AC 2
CML 7020 complement

LINK

2

RAR 7010 rotate AC and
LINK right one

4

RAL 7004 rotate AC and
LINK left one

4

RTR 7012 rotate AC and
LINK right two

4

RTL 7006 rotate AC and
LINK left two

4

IAC 7001 increment AC 3

[IMAGE: Group 2 OPR Instructions]

Group 2 OPR Micro-instructions

Mnemonic Opcode Name Event Time

SMA 7500 skip on minus AC 1
SZA 7440 skip on zero AC 1
SPA 7510 skip on plus AC 1
SNA 7450 skip on non zero

AC

1

SNL 7420 skip on non-zero
LINK

1

SZL 7430 skip on zero
LINK

1

SKP 7410 skip uncondition-
ally

1

OSR 7404 inclusive OR,
switch register
with AC

3

HLT 7402 halts the program 4

10

CLA 7600 clear AC 2

Any instructions from the same group can be combined and still take only once cycle.
For example, you can quickly load a number of constants into the AC in one instruction
made of Group 1 Micro-instructions.

Quick Constant Instructions

Octal Combination Result in AC

7201 CLA IAC 0001

7326 CLA STL RTL 0002

7325 CLA STL IAC RAL 0003

7307 CLA CLL IAC RTL 0004

7327 CLA STL IAC RTL 0006

7344 STA CLL RAL 7776 (-2)
7346 STA CLL RTL 7775 (-3)
7330 CLA STL RAR 4000

7332 CLA STL RTR 2000

7333 CLA STL IAC RTR 6000

TYPTEX, Redux

Printing text that’s in our code is all well and good, but what about other strings in mem-
ory? Can we rewrite TYPTEX to accept a pointer?

/003 TYPE A CHARACTER CHAIN

/TYPE THE CHARACTERS IN THE LIST, POINTED TO

/BY THE FIRST ARGUMENT. LIST TERMINATOR =0

/

/ JMS TYPTEX /TYPE "ABC"

/ LIST

/ RETURN /AC=0

/

/LIST, 301

/ 302

/ 303

/ 0

0 /USED AS POINTER

TYPTEX, 0 /TYPE TEXTSTRING

TAD I TYPTEX /GET ARG

DCA TYPTEX-1 /SAVE TO USE AS POINTER

ISZ TYPTEX /FOR CORRECT RETURN

TAD I TYPTEX-1 /GET CHAR

SNA /ZERO?

JMP I TYPTEX /YES, RETURN

JMS TYPE /NO

ISZ TYPTEX-1

JMP TYPTEX+4 /LOOK FOR NEXT

We pass in only one actual argument, which is the pointer to the null-terminated string in
memory.We could just as easily have passed this via the AC per Floor’s standards. That is
left, as they say, as an interesting exercise for the reader.
So let’s take a look at the pieces.

11

Locals, args, and return address

0 /USED AS POINTER

TYPTEX, 0 /TYPE TEXTSTRING

TAD I TYPTEX /GET ARG

DCA TYPTEX-1 /SAVE TO USE AS POINTER

ISZ TYPTEX /FOR CORRECT RETURN

We’ve seen all of this before. The only novel thing here is that the address before the start
of the subroutine is being used as a local copy of the argument instead of a constant. We
will see TYPTEX-1 used throughout the rest of this code to refer to our “local variable”.

Loop over TYPE

TAD I TYPTEX-1 /GET CHAR

SNA /ZERO?

JMP I TYPTEX /YES, RETURN

JMS TYPE /NO

ISZ TYPTEX-1

JMP TYPTEX+4 /LOOK FOR NEXT

This loop starts at TYPTEX+4, hence the JMP to that at the end. The way we break out of
this loop is by running SNA after loading the next character, and letting that skip over the
JMP I TYPTEX return if we haven’t hit a 0 yet.

Aside from that, this is the same sort of logic as the original.

PAL

Tracing through code in our heads is all well and good, but there really is nothing like as-
sembling it and trying it out yourself. Fortunately, thanks to some dedicated ex-Digital
Equipment Corporation employees and a developer at the Bay Area Rapid Transit organ-
isation, we have everything we need at our fingertips.

Installation

If you’re running Debian or one of its derivatives such as Raspbian or Ubuntu, you can
get yourself a comfortable PDP-8 development system by running:

sudo apt install simh palbart

This will install:

1. simh, an emulator for a large number of old computers, including the PDP-8.

2. palbart, a PAL assembler that generates binaries you can load from simh.

These are slightly older versions of these tools, but that shouldn’t matter too much for
our needs.If you’re looking for newer software for some reason, I recommend compiling
pal.c from Vincent Slyngstad’s 8tools collection along with the latest upstream version
of simh.

Starting Your Project

Create a new empty directoryOr “folder”, if that’s how you roll.
and put the following into a file there called first.pal:

PAGE 1

JMS TYPTEX

DATA

12

https://packages.debian.org/stable/simh
https://packages.debian.org/stable/palbart
http://svn.so-much-stuff.com/svn/trunk/pdp8/8tools/
https://github.com/simh/simh
https://github.com/simh/simh

TSF /LET THE FINAL CHARACTER PRINT

JMP .-1

HLT

DATA, 0310; 0345; 0354; 0354; 0357; 0254; 0240; 0367;

0357; 0362; 0354; 0344; 0241; 0015; 0012; 0000

NOP

TYPE, 0

JMP .+3 /OVERLAID BY "NOP"

TSF

JMP .-1

TLS

CLA

TAD TYPE-1

DCA TYPE+1

JMP I TYPE

0 /USED AS POINTER

TYPTEX, 0 /TYPE TEXTSTRING

TAD I TYPTEX /GET ARG

DCA TYPTEX-1 /SAVE TO USE AS POINTER

ISZ TYPTEX /FOR CORRECT RETURN

TAD I TYPTEX-1 /GET CHAR

SNA /ZERO?

JMP I TYPTEX /YES, RETURN

JMS TYPE /NO

ISZ TYPTEX-1

JMP TYPTEX+4 /LOOK FOR NEXT

$

Let’s look at some of the PAL glue we used to turn these subroutines into a complete pro-
gram.

The PAGE Directive

As we mentioned in the Memory-addressing Instructions section, the first page of core is
called “The Zero Page”, and it has some special properties. We’ll get more into that later,
but for now it’s less error-prone and future-proof to tell our code to load into PAGE 1 in-
stead. Since pages have 128 words, this means our code will start at address 0200.

A Label, By Itself

You may have noticed that the syntax highlighting flagged DATA as an unknown opcode,
printing it in reverse. This is in fact fine, and the assembler will replace that with the ad-
dress that label points to in its second pass.

Semicolons

We’ve shortened the length of this file by joining the lines at DATA containing the raw
ASCII codes with semicolons. This is purely aesthetic.

EOF

Historically, PAL files have ended with a single $. This was necessary in the days when
code might be loaded directly from paper tape, and the assembler needed more hints
about when the code file was complete.

13

The palbart assembler has an option to let you end the file without a $ but it’s probably
a good habit to get into if you start working with native tools in OS8 or similar.

Build and Check

So now that we’ve got our first.pal, let’s assemble it and see what the results are:

palbart first.pal

cat hello.lst

If all went well, you should see your code listing with three new columns to the left, like
so:

1 PAGE 1

2

3 00200 4240 JMS TYPTEX

4 00201 0205 DATA

5 00202 6041 TSF /LET THE FINAL CHARACTER PRINT

6 00203 5202 JMP .-1

7 00204 7402 HLT

These columns are, in order:

1. The line number in your original source file, first.pal, where the following code
lives.You may notice a lot of code attributed to two lines somewhere around line 10
thanks to those semicolons.

2. The memory address in octal where each assembled word of code lives.It’s printed
as five octal digits because of an expansion option for PDP-8 memory that we won’t
be dealing with.

3. The value, in octal, of each address in memory.

Scan down the left side and notice how indistinguishable your code is from your mem-
ory addresses and your data. The ease with which these things can be confused is why
type systems in high-level languages were invented!

Debug

If palbart told you how many errors it detected, you may be frustrated that it didn’t ex-
plain what they were. You’ll find the results in a file called first.err, complete with
the line of code and the address it would have loaded into.

Run

Once you have successfully built a first.bin with no errors, it’s time to run pdp8 from
your development directory, load your binary file, and JMP to the start of your code in
PAGE 1:

PDP-8 simulator V3.8-1

sim> load hello.bin

sim> run 0200

If it worked, you should see the printed message, and a notification about a halt instruc-
tion. Type exit, quit, or bye to leave simh. If your program runs in a loop without
stopping, you can get back to the sim> prompt by hitting ^EThat’s shorthand for Ctrl-
e.

Was the message what you expected? Do you think it would be worth spending money
for hardware that can print lower-case letters?

14

PRINTD

/004 BINARY TO DECIMAL CONVERSION AND TYPE; NO SIGN

/ROUTINE TO CONVERT A BINARY WORD TO DECIMAL AND TYPE IT.

/VALID FOR NUMBERS 0-4095. NO SIGN.

/IF USED FOR 3 DIGITS: DELETE 6030;-4=-3 DIGIT COUNT.

/

/ TAD WORD

/ JMS PRINTD

/ RETURN /AC=0

6030 /-1000 CONVERSION CONSTANTS

7634 /-100

7766 /-10

7777 /-1

TAD . /USED FOR CONV. CONSTANTS

0 /DIGIT BCD TO BE TYPED

0 /COUNTER

260 /TO MAKE A CHAR.

0 /SAVE AREA

-4 /DIGITS TO BE TYPED (-4,-3,-2)

PRINTD, 0 /ENTER WITH WORD IN AC

DCA PRINTD-2

TAD PRINTD-1 /SET UP COUNT

DCA PRINTD-4

DCA PRINTD-5 /CLEAR BCD

TAD PRINTD-6 /FETCH CURR. CONV. CONST.

TAD PRINTD-4 /BY ADDING COUNT TO TAD

DCA .+1

HLT

CLL

TAD PRINTD-2 /VALUE - CONSTANT

SNL /OVERFLOW?

JMP .+4 /NO,TYPE IT

ISZ PRINTD-5 /YES,NEXT TRY

DCA PRINTD-2

JMP PRINTD+5

CLA

TAD PRINTD-5 /BCD

TAD PRINTD-3 /+260

JMS TYPE

ISZ PRINTD-4

JMP PRINTD+4 /NEXT DIGIT

JMP I PRINTD

This is a pretty long one, so let’s break it into pieces. We’ll assume the number we pass in
is 0242, which should print “0162” in decimal.This is often written as 2428 = 16210, but
for now we’ll write octal values like this and decimal values normally (except in code
comments).

Locals and arguments

To start with, we have five constants, stored as far as ten words before PRINTD begins:

15

6030 /-1000 CONVERSION CONSTANTS

7634 /-100

7766 /-10

7777 /-1

TAD . /USED FOR CONV. CONSTANTS

The first four look like negative orders of magnitude in decimal, and a copy of the TAD

instruction that appears to add its own address to the AC.

0 /DIGIT BCD TO BE TYPED

0 /COUNTER

260 /TO MAKE A CHAR.

0 /SAVE AREA

-4 /DIGITS TO BE TYPED (-4,-3,-2)

PRINTD, 0 /ENTER WITH WORD IN AC

The 0 entries we’ll keep in mind for later, but there are two that already have values.
PRINTD-3 has the value 260, which is the beginning of the digits section of the ASCII ta-
ble, and PRINTD-1 has a -4 to keep track of how many digits are left to type. We’ll get
back to that -4 soon.

Setting up locals

DCA PRINTD-2

TAD PRINTD-1 /SET UP COUNT

DCA PRINTD-4

DCA PRINTD-5 /CLEAR BCD

The first few steps are:

1. Store our AC argument in the SAVE AREA at PRINTD-2.0242 in our test example.

2. Copy the -4 count of digits to type from PRINTD-1 to the COUNTER at PRINTD-4.

3. Since DCA clears the AC, our second one writes a 0 into the DIGIT BCD TO BE

TYPED variable.BCD is Binary-coded decimal, which is a slightly wasteful way to
use four bits to store ten digits. In octal this looks like 0-7 as normal, but then deci-
mal 8 is 10 and decimal 9 is 11.

Dirty Tricks

Watch closely, as you mustn’t take your eyes off of self-modifying code:

TAD PRINTD-6 /FETCH CURR. CONV. CONST.

TAD PRINTD-4 /BY ADDING COUNT TO TAD

DCA .+1

HLT

1. We load the instruction TAD . from the constants area at PRINTD-6 into AC.

2. We add our current COUNTER from PRINTD-4 to it. Since that’s a negative number
starting with -04, it now contains TAD PRINTD-12Remember that PAL defaults to
octal, so this is ten addresses back from PRINTD

which is the -1000 “conversion argument”.

3. We write this new “add -1000” instruction over the following instruction

4. We now run this instruction, and the AC contains -1000

16

Printing the first digit

Now we try to see if we’re ready to print a digit. Since our output is expected to be
“0162”, that should be a zero.

CLL

TAD PRINTD-2 /VALUE - CONSTANT

SNL /OVERFLOW?

JMP .+4 /NO,TYPE IT

1. Clear the LINK, which is a flag showing a carry operation was done past the end of
the AC.

2. We add our subroutine’s input argument to the constant we just loaded, so in this
case we’re subtracting octal 1000 from it.

3. If that subtraction caused an overflow carry into the LINK,With two’s complement
addition, this happens when a negative number wraps around to positive again, but
not when a positive number goes negative. So this flag will be set whenever the posi-
tive number is >= the absolute value of the negative one.
then we need to work on it some more. We’ll Skip the next instruction on our Non-
zero Link.

4. If there was no overflow and we weren’t skipped, we can JMP to the routine to print
out the digit.

So this block asks “Is our number larger than 1747?”Decimal 999
and jumps to the TYPE section with the initial zero if not.

Since 162 is less than 1000, we’ll skip to the printing routine for the initial zero.

CLA

TAD PRINTD-5 /BCD

TAD PRINTD-3 /+260

JMS TYPE

ISZ PRINTD-4

JMP PRINTD+4 /NEXT DIGIT

JMP I PRINTD

1. Clear the AC to zero.

2. Add our digit 0 to the ASCII digit offset, getting us 0260 in the AC.

3. JMS TYPE to print out the ASCII zero.

4. Increment our COUNTER variable at PRINTD-4 to -3 so we can try the next decimal
digit.

5. If we overflow to zero, we’ll skip right to the return JMP at the end, but for now we’ll
jump back to the previous block of code.

Printing the Second Digit

The second digit of “0162” is 1, so we hope to print an ASCII one this time.

DCA PRINTD-5 /CLEAR BCD

TAD PRINTD-6 /FETCH CURR. CONV. CONST.

TAD PRINTD-4 /BY ADDING COUNT TO TAD

DCA .+1

TAD PRINTD-12 /OVERWRITTEN LAST TIME

17

We’re back in the self-modifying section, but this time COUNTER at PRINTD-4 is -3, so
the instruction we keep overwriting is now TAD PRINTD-11Again, remember that PAL
uses octal, so that’s nine steps back from PRINTD

. This means our AC now has the representation for decimal -100.

CLL

TAD PRINTD-2 /VALUE - CONSTANT

SNL /OVERFLOW?

JMP .+4 /NO,TYPE IT

When we add 162 to -100, the two’s complement addition causes a carry to wrap from
negative back to positive, so our LINK is set. This means we can’t print the BCD just yet,
and need to skip to the next bit of code.

ISZ PRINTD-5 /YES,NEXT TRY

DCA PRINTD-2

JMP PRINTD+5

1. Increment the BCD to 1

2. Store the result of our addition162 - 100 = 62
in the saved copy of our number, since we know we’re ready to print out that 100 we
just subtracted.

3. Jump back into the self-modifying bit.

TAD PRINTD-6 /FETCH CURR. CONV. CONST.

TAD PRINTD-4 /BY ADDING COUNT TO TAD

DCA .+1

TAD PRINTD-11 /OVERWRITTEN LAST TIME

Our COUNT is still -3, so the code remains the same as before. We’re still looking at the
hundreds place.

CLL

TAD PRINTD-2 /VALUE - CONSTANT

SNL /OVERFLOW?

JMP .+4 /NO,TYPE IT

62 + -100 doesn’t overflow as it goes negative, so we don’t skip that JMP to the TYPE sec-
tion.

CLA

TAD PRINTD-5 /BCD

TAD PRINTD-3 /+260

JMS TYPE

ISZ PRINTD-4

JMP PRINTD+4 /NEXT DIGIT

Our BCD is 1, and we add that to get 0261 which is ASCII “1”. We call TYPE, increment
our COUNTER and jump to the third digit.

Printing the rest of the digits.

We’ve printed “01” so far, which is correct given our desired output is “0162”. We’ve
seen how this code works enough that we don’t need to keep including sections inline,
but consider that the next digit works as follows:

1. COUNTER is now -2

18

2. The self-modifying section of code uses this to load PRINTD-10Eight words back
from PRINTD

which contains a decimal -10.

3. The subtract-and-check-overflow section will loop six times, each time adding 1 to
the BCD and subtracting 10 from 62 in our PRINTD-2 save area.

4. When it comes time to print, the 6 in our BCD variable plus the 0260 constant will
get us 0266 to spit out an ASCII “6”.

The process will repeat similarly for the final “2”, with COUNTER at -1 and the self-modi-
fying code loading a decimal -1 from PRINTD-7Finally back to the level where octal and
decimal are equal!
. The overflow check will run twice, and it will print ASCII 0262 to get the “2”.

ISZ PRINTD-4

JMP PRINTD+4 /NEXT DIGIT

JMP I PRINTD

Finally, when we increment PRINTD-4 it wraps from -1 back to 0 and ISZ skips the next
instruction. We land on the JMP I PRINTD and return back to the code that called this
subroutine.

Review

We’ve encountered quite a few code idioms for an instruction set that technically only has
eight opcodes.Even if the IOT and OPR opcodes contain dozens of sub-instructions
within them.
Let’s go over some of them.

Inline Arguments

If we agree on calling conventions and the number and placement of arguments, we can
ask the calling code to include them right after they JMS to our subroutine. We can then
consume them as follows:

MYSUBR, 0 /RETURN POINTER PLACED BY JMS

TAD I MYSUBR /GET AN ARGUMENT

ISZ MYSUBR /MOVE RETURN POINTER PAST IT

/... /CODE DOES THINGS HERE

JMP I MYSUBR /RETURN TO CODE AFTER ARGUMENTS

Copying Words

The PDP-8 doesn’t have any instructions for moving data into the AC unchanged, so we
have to use the addition operator and a zero AC

CLA /CLEAR ACCUMULATOR

TAD SOURCE /ADD DATA TO AC

DCA DEST /DEPOSIT AND CLEAR AC

Skip a JMP

The PDP-8 doesn’t have any conditional branching instructions that take addresses as ar-
guments, but ISZ along with some of the IOT and OPR instructions will let you skip an
instruction. We can choose between two paths by making that instruction a JMP.

SNA /SKIP ON NONZERO ACCUMULATOR

JMP ZEROAC /GO TO THE ZERO-AC CODE

19

JMP NONZERO /GO TO THE NON-ZERO CODE

Negative Loop Index

The ISZ instruction was designed with negative loop indices in mind. Instead of count-
ing from 0 to 5, you count from -5 to 0. When your index variable hits 0, it will skip the
JMP instruction that goes back to the top of your loop, and proceed with the rest of the
code.

IDX, -5 /OUR LOOP INDEX VARIABLE

LOOP, JMS MYFUNC /CODE TO DO SOME WORK EACH TIME

ISZ IDX /INCREMENT AND SKIP ON ZERO

JMP LOOP /GO BACK TO DO MORE WORK

JMS ANOTHER /WE'RE DONE WITH THE LOOP NOW

Self-modifying Code

This is a bit of a tricky one, as it’s generally a bad idea. However, we saw two examples
of this:

1. Copying a NOP instruction to disable an initialisation instruction after the first time
the subroutine was invoked.

2. Combining a TAD . instruction with an offset variable to generate a new instruction
to choose which values from a list of four to add at any given iteration through a
loop.

Both of these are clever, but may have been better done another way. Both could have
been worked around through the use of memory-indirect addressing, but at the cost of
some overhead. On a system this small, we have to keep these tricks in mind for the
point when we begin to tax the machine’s capabilities.

PRINT8

/005 BINARY TO OCTAL CONVERSION AND PRINT

/ROUTINE PRINTS THE AC IN OCTAL, NO SIGN.

/

/ TAD WORD

/ JMS PRINT8

/ RETURN /AC=0

/

260

7 /MASK

0 /DIGIT COUNTER

-4 /# OF DIGITS

0 /TEMPORARY

PRINT8, 0

RAL CLL

DCA PRINT8-1

TAD PRINT8-2

DCA PRINT8-3 /SET UP COUNT

TAD PRINT8-1

RAL

RTL

DCA PRINT8-1

TAD PRINT8-1

20

AND PRINT8-4 /MASK

TAD PRINT8-5 /MAKE ASCII

JMS TYPE

ISZ PRINT8-3 /4 DONE?

JMP PRINT8+5 /NOT YET

JMP I PRINT8

This gets tiresome to read with all of these relative memory addresses, so let’s try again
with some labels to clarify things:

ASCII, 260

MASK, 7 /MASK

COUNT, 0 /DIGIT COUNTER

DIGITS, -4 /# OF DIGITS

TMP, 0 /TEMPORARY

PRINT8, 0

RAL CLL

DCA TMP

TAD DIGITS

DCA COUNT /SET UP COUNT

LOOP, TAD TMP

RAL

RTL

DCA TMP

TAD TMP

AND MASK /MASK

TAD ASCII /MAKE ASCII

JMS TYPE

ISZ COUNT /4 DONE?

JMP LOOP /NOT YET

JMP I PRINT8

The structure of this subroutine becomes a lot clearer now, so let’s start by looking at the
initialisation section:

RAL CLL

RAL CLL

DCA TMP

TAD DIGITS

DCA COUNT /SET UP COUNT

Really this could be written as CLL RAL, if you consult the table in the [OPR] section.
The two microinstructions are combined to make a single instruction with the opcode
7104, and the CLL is guaranteed to happen before the RAL.

So this clears the LINK bit and rotates the AC left into that link bit, loading a zero into the
right of AC.This is effectively a single “Shift Left” instruction, in other architectures.
So we’ve multiplied by two, but we’ve also dropped the two’s-complement “sign” bit, as
mentioned in the comment header.

We quickly store this value in TMP and then copy the -4 from DIGITS into COUNT. So
now the main loop can begin.

21

RAL/RTL

LOOP, TAD TMP

RAL

RTL

DCA TMP

TAD TMP

Not content with shifting our TMP left once, we load it in and rotate it to the left three
times. Since RALRotate AC&L once
is 7004 and RTLRotate AC&L twice
is 7006 and already contains RAL, we have to do these two operations separately.For
more on this topic, see the Illegal Combinations section on page 138 of the PDP-12 Refer-
ence Manual.

After saving and re-loading a copy of this value, we now have the AC argument shifted
once and rotated three times, so that everythingExcept the sign bit, that is, which is now
zero
is rotated three bits to the left of where it was previously.This seems wrong, at first: we’ve
rotated four times, after all! But bear in mind that the bits have to pass through the LINK,
which we spent a step clearing, before getting back to the least-significant bits of our AC.

AND

AND MASK /MASK

TAD ASCII /MAKE ASCII

It may surprise you that AND is the very first of the PDP-8 Instructions that operate on
memory, earning it the very prestigious opcode prefix of 0. By ANDing our AC with 0007,
we strip off all but the last three bits, and give us a single octal digit we can convert to
ASCII by adding to the number 0206.

JMS TYPE

ISZ COUNT /4 DONE?

JMP LOOP /NOT YET

JMP I PRINT8

The rest of this subroutine should be familiar to you, after the previous example: print,
then either loop or return.

PACK

This is our first submission by an outside contributor, one Thierri den Dunnen. Thierri
was less worried about declaring symbols or using the zero page, which helps readabil-
ity.

/030 SUBROUTINE TO PACK CHARACTERS (TSS8)

/THREE CHARACTERS IN TWO WORDS (TSS8 FORMAT)

/

/PACKED:111111112222

/ 222233333333

/

/CALL :JMS PACK

/ ADDRESS INPUTBUFFER

/ ADDRESS OUTPUTBUFFER

/ RETURN

/

22

/ROUTINE USES AUTO INDEX 10 AND 11

/

/FORMAT INPUTBUFFER= 1 CHAR/WRD

/LENGTH OUTPUTBUFFER= 200

/LENGTH INPUTBUFFER= 300

/

PACK, 0

TAD PCKBFL /-BUFFERLENGTH OUTPUTBUFFER

STL RAR /DIVIDE BY 2

DCA PCKCNT

CLA CMA /-1

TAD I PACK /ADDRESS INPUTBUFFER

DCA 10

ISZ PACK

CMA /-1

TAD I PACK /ADDRESS OUPUTBUFFER

DCA 11

ISZ PACK

PCKLOP, TAD I 10 /GET CHAR

CLL RTL

RTL

DCA PCKTMP /TEMP. STORAGE

TAD I 10 /NEXT CHAR

RTR

RTR

DCA PCKTP1

TAD PCKTP1

AND C17

TAD PCKTMP

DCA I 11 /FIRST WORD

TAD PCKTP1 /PICK UP AGAIN

RAR

AND C7400

TAD I 10 /NEXT CHAR

DCA I 11 /SECOND WORD

ISZ PCKCNT /BUFFER FULL ?

JMP PCKLOP /NO,PACK NEXT

JMP I PACK /YES, EXIT

/

/VARIABLES

/

PCKCNT,0

PCKTMP,0

PCKTP1,0

PCKBFL,-200

/

/GENERAL CONSTANTS

C17, 17

C7400, 7400

23

Purpose

Per the comments, this function takes a buffer full of 8-bit characters and packs them into
a smaller buffer where each word has 1½ characters.The comment describes this as “TSS8
format”, TSS8 being a time-sharing OS for the PDP-8.
It accepts two arguments:

1. A pointer to a buffer that is 0300 words long,A page and a half
containing one character per word.

2. A pointer to a 0200-word-long bufferone page of core
to put the packed data.

It also warns that it “uses auto index 10 and 11”, about which more later.

So given three unpacked wordsThe digits depicted here indicate character identity, not
bit value: bits can only be 0 or 1!
in our input buffer:

1. 000011111111

2. 000022222222

3. 000033333333

We will end up with two words packed as follows in our output buffer:

1. 111111112222

2. 222233333333

PCKCNT

TAD PCKBFL /-BUFFERLENGTH OUTPUTBUFFER

STL RAR /DIVIDE BY 2

DCA PCKCNT

We begin by loading the value of PCKBFL, which starts at -200. We’ll be writing two
words at a time, so our loop will want to divide that by two. We use RAR to take advan-
tage of the fact that shifting bits to the right divides by 2 in the same way that shifting
digits to the right divides by 10 in decimal.

But since we’re using negative values for this, we first need to make sure the LINK is set
so that our value stays negative. We do this with the STL instruction, which is made up
of CLLClear LINK: that is, set it to 0
and CMLComplement LINK: set it to the opposite of what it was. In this case it flips the
CLL’s 0 into a 1.

So now our PCKCNT variable contains -100.

Arguments

CLA CMA /-1

TAD I PACK /ADDRESS INPUTBUFFER

DCA 10

ISZ PACK

You may remember that we can use OPR instructions to generate a small number of con-
stants. In this case we use CLA CMAClear the AC and then take its ones-complement.
to load a -1 into the AC. We then add this to the first argument, resulting in the address
before the start of our input buffer.

24

But then we store it in zero-page address 0010. This is one of the auto index locations
mentioned earlier.

We then ISZ to move on to the next argument.

CMA /-1

TAD I PACK /ADDRESS OUPUTBUFFER

DCA 11

ISZ PACK

WE do the same thing for the output buffer, but since we recently did a DCA we know we
don’t need to CLL: the LINK is already 0.

We store the address before the output buffer in auto-index address 0011.

Autoindexing

PCKLOP, TAD I 10 /GET CHAR

The PDP12 System Reference has the following to say about autoindexing:

The eight registers in locations 10-17 of Page 0 have a special function when
indirectly addressed. The contents of such a register are first incremented by
1; the result is taken as the effective address of the operand. This autoindex-
ing feature allows the programmer to address a series of contiguous locations
without extra address modification...

Since we’re doing a TAD I in this instruction, the indirect addressing circuitry in the
PDP-8 will increment the value at address 0010 before doing the memory-indirect addi-
tion. This is the reason we first wrote the address before our buffer: the first time we used
this index, it incremented the pointer right to the start of our buffer. So now our AC has
the first word in our input buffer.

Shift Left

CLL RTL

RTL

DCA PCKTMP /TEMP. STORAGE

Since RTL rotates left twice, we double it up to move our character four bits up to the top
of our word. The CLL turns the rotate into a shift, since we know we’ll bring in zeroes on
the right.

Before:
LINK: 0
AC: 000011111111

After:
LINK: 0
AC: 111111110000

We store this shifted form in PCKTMP for later.

Shift Right

TAD I 10 /NEXT CHAR

RTR

RTR

25

We do the same with the second character,Remember that address 0010 is incrementing
each time we do an I instruction on it.
but this time we want to shift it right four bits:

Before:
LINK: 0
AC: 000022222222

After:
LINK: 2
AC: 222000002222

Bitwise Operations

DCA PCKTP1

TAD PCKTP1

AND C17

TAD PCKTMP

DCA I 11 /FIRST WORD

We store a copy to our second temporary variable, PCKTP1 and re-load it to AND with
C17, which is just the constant 0017000000001111 binary
. This reduces our AC to just the four least-significant bits, which now hold the four most-
significant bits of our second character.

Since we’ve taken great care that we have zeroes for the eight most-significant bits of our
AC, and that we had zeroes in the four least-significant bits of PCKTMP, we know that we
can TAD to perform a sort of OR operation and not interfere with our LINK from earlier.

To summarise:

TAD PCKTP1:
LINK: 2
AC: 222000002222

AND C17:
LINK: 2
AC: 000000002222

TAD PCKTMP:
LINK: 2
AC: 111111112222

So that’s the first 1½ characters packed! We write out the first packed word to our output
buffer using autoindex register 0011 in the zero page, and move on to the next bit.

The Third Character

TAD PCKTP1 /PICK UP AGAIN

RAR

AND C7400

We pick our rotated second character back out of PCKTP1 and rotate it right one last time.
We’ve not called any CLL operations or done any TAD calls that would affect the LINK, so
we know it still has that remaining bit for us to pop back into place. So our operations
look like this:

TAD PCKTP1:
LINK: 2

26

AC: 222000002222

RAR:
LINK: 2
AC: 222200000222

AND C7400:C7400 contains 7400 as you would expect, also read as 111100000000
binary.
" 3 LINK: 2
AC: 222200000000

So we’ve quickly lined up those four bits and masked off the rest to accept our third char-
acter:

TAD I 10 /NEXT CHAR

DCA I 11 /SECOND WORD

Again, we can safely TAD without overflow or mixing, and write it straight into the next
word of our output buffer as 222233333333.

Buffer Limits

ISZ PCKCNT /BUFFER FULL ?

JMP PCKLOP /NO,PACK NEXT

JMP I PACK /YES, EXIT

Since PCKCNT uses the Negative Loop Index idiom, we keep going back up to PCKLOP

until we’ve exhausted our two buffers, and return.

UNPSGL

Instead of doing the buffer-to-buffer unpack routines from this cookbook, let’s look at the
subroutine that unpacks characters one at a time from the buffer:

/034 SUBROUTINE UNPACKS CHARACTERS ONE BY ONE (TSS8)

/PACKED THREE CHARACTERS IN TWO WORDS (TSS8 FORMAT)

/PACKED:111111112222

/ 222233333333

/

/CALL :JMS UNPSGL

/ ADDRESS INPUTBUFFER

/ RETURN BUFFER EMPTY AC=0

/ NORMAL RETURN AC=CHAR.

/

/INITIALIZE ONCE UNPRBF:=UNPBEF:=UNPCNT:=0

/

/

UNPSGL, 0

CLA CLL

TAD UNPRBF /ARE THERE CHARS IN

SZA CLA /TEMP. BUFFER ?

JMP UNPGET /YES, GET ONE

TAD UNPBEF /NO, INPUTBUFER EMPTY ?

SZA CLA

JMP UNPEMP /YES,RETURN END OF BUFFER

TAD UNPCNT /NO OR YES,MUST I

SNA CLA /START UP POINTERS ?

27

JMS UNPINI /YES, PLEASE DO

TAD UNPRBA /NO,JUST UNPACK NEXT WORDS

DCA UNPRP

TAD I UNPPTR /NEXT WORD FROM INPUTBUF

RTR

RTR

AND C377

DCA I UNPRP /FIRST CHAR IN TEMP. BUF

ISZ UNPRP

TAD I UNPPTR /GET WORD AGAIN

CLL RTL

RTL

AND C360

DCA I UNPRP /TEMP. STORAGE

ISZ UNPPTR

TAD I UNPPTR /NEXT WORD

CLL RAL

RTL

RTL

AND C17

TAD I UNPRP

DCA I UNPRP /SECOND CHAR

ISZ UNPRP

TAD I UNPPTR /THAT WORD AGAIN

ISZ UNPPTR

AND C377

DCA I UNPRP /THIRD CHAR

TAD UNPRBA /RESET POINTER TEMP. BUF

DCA UNPRP

CLA CLL CMA RTL /-3

DCA UNPRCT /3 CHAR'S IN TEMP. BUF

ISZ UNPCNT /INPUTBUFFER EMPTY ?

JMP UNPGET /NO,GET CHAR NOW

IAC /YES,SET FLAG BUFFER EMPTY

DCA UNPBEF /AND THEN GET CHAR

UNPGET, ISZ UNPRCT /LAST FROM TEMP. BUF ?

IAC /NO,SET FLAG

DCA UNPRBF /YES RESET FLAG

TAD I UNPRP /GET CHAR

ISZ UNPRP

ISZ UNPSGL /NORMAL EXIT

UNPEMT, ISZ UNPSGL

JMP I UNPSGL

/

UNPEMP, DCA UNPBEF /RESET FLAG

JMP UNPEMT /AND EMPTY BUFFER RETURN

/

UNPINI, 0

DCA UNPRBF /RESET FLAG

TAD I UNPSGL /ADDRESS INPUTBUFFER

DCA UNPPTR

28

TAD UNPBFL /-LENGTH OF BUFFER

STL RAR /DIVIDE BY 2

DCA UNPCNT

JMP I UNPINI

/

/VARIABLES

UNPBFL,-400

UNPCNT,0

UNPRCT,0

UNPRP, 0

UNPPTR,0

UNPRBF,0

UNPBEF,0

UNPRBA,UNPRB

UNPRB, 0

0

0

/

/GENERAL CONSTANTS

C17, 17

C360, 360

C377, 377

Arguments

This subroutine takes one argument, which is the address of the input buffer. But it also
needs you to specify a callback instruction that gets executed if the return buffer is empty.

So you might call it like this:

JMS UNPSGL

0260 / ADDRESS OF RDBLK STORAGE

JMP RDBLK / READ ANOTHER DISK BLOCK INTO 0260

TYPE / PRINT AC

Underflow Check

The code warns us that its internal variables UNPRBF, UNPBEF, and UNPCNT should be re-
set to 0 each time we try a new input buffer. The names are terse and confusing, so here’s
what you need to know:

UNPRBF:
This is a Read Buffer Flag, and is nonzero when there are unpacked characters waiting
to be read and returned.

UNPBEF:
This is a Buffer Empty Flag, and is set when the input buffer has run out of packed
words.

UNPCNT:
This is a countdown index showing how many more words we have left to read from
the input buffer.

CLA CLL

TAD UNPRBF /ARE THERE CHARS IN

SZA CLA /TEMP. BUFFER ?

29

JMP UNPGET /YES, GET ONE

The beginning of this function has a lot of catching up to do. It asks a lot of questions
about what may or may not have happened in previous invocations.

In this case, it’s trying to see if we still have chars in our little temporary buffer. If it’s 0,
we skip over the UNPGET jump and keep testing things with a freshly-cleared AC.

TAD UNPBEF /NO, INPUTBUFER EMPTY ?

SZA CLA

JMP UNPEMP /YES,RETURN END OF BUFFER

To start with we set up UNPBEF as 0, so we’ll skip the jump to the UNPEMP section now
and keep going.

TAD UNPCNT /NO OR YES,MUST I

SNA CLA /START UP POINTERS ?

JMS UNPINI /YES, PLEASE DO

If we’ve reached this point, we don’t have anything in our read buffer and our input buf-
fer isn’t empty, so we check the UNPCNT to see if we have a countdown going. If so, we
skip on non-zero AC and keep going.

But in our case, everything’s 0 so we need to run a subroutine from our subroutine.Pre-
sumably we hit this condition every three characters.
Lets dive down into that, shall we?

JMS UNPINI

UNPINI, 0

DCA UNPRBF /RESET FLAG

TAD I UNPSGL /ADDRESS INPUTBUFFER

DCA UNPPTR

TAD UNPBFL /-LENGTH OF BUFFER

STL RAR /DIVIDE BY 2

DCA UNPCNT

JMP I UNPINI

We came here from a TAD UNPCNT, so we store that in UNPRBF. That’s still 0 for now, so
nothing has changed yet.

Next we read the address of the input buffer from the argument space and store it in
UNPPTR. We don’t ISZ past that until the end of the code, as there are multiple branches
where it gets read.

Then we read the negative length of the buffer from UNPBFL and do the same STL RAR
trick as before to divide it by two. Since our buffer is 400 (256 decimal) words long,This
is a standard block size for storage media of this era. LINCTape, DECTape, and the RS
and RK models of disk drives all serve up 256 blocks of 12-bit words to PDP-8 systems.
we end up with -200, which we finally store in UNPCNT.

So UNPCNT will keep track of how far we are through one disk or tape block of packed
data.

Let’s return from UNPINI and resume UNPSGL.

Unpacking Character One

TAD UNPRBA /NO,JUST UNPACK NEXT WORDS

DCA UNPRP

30

UNPRBA has the address of UNPRB in it, which is a three-word buffer defined at the end of
our routine.

TAD I UNPPTR /NEXT WORD FROM INPUTBUF

RTR

RTR

AND C377

DCA I UNPRP /FIRST CHAR IN TEMP. BUF

We read a packed word, rotate it right four place values, and mask off 000011111111 to
keep the eight least-significant bits that now hold our character. Then we write that
straight into the first location in UNPRB. Let’s write that as UNPRB1.

Unpacking and Reassembling Character 2

ISZ UNPRP

TAD I UNPPTR /GET WORD AGAIN

CLL RTL

RTL

AND C360

DCA I UNPRP /TEMP. STORAGE

Now we increment UNPRP to point to UNPRB2 and re-read that first word. Now we shift
this left four spaces and mask off 000011110000 to get the half-character in the right
place. We store that in UNPRB2 and keep going.

ISZ UNPPTR

TAD I UNPPTR /NEXT WORD

CLL RAL

RTL

RTL

AND C17

TAD I UNPRP

DCA I UNPRP /SECOND CHAR

This time we increment UNPPTR and read in the next word. We leave UNPRP alone, be-
cause we’re not finished assembling UNPRB2 yet.

We rotate five times left to get our four bits past the LINK and into the four least-signifi-
cant bits of the AC, and mask off 000000001111 to get the second half of character 2.
We add it to UNPRB2 and write it back there again, complete.

Unpacking Character 3

ISZ UNPRP

TAD I UNPPTR /THAT WORD AGAIN

ISZ UNPPTR

AND C377

DCA I UNPRP /THIRD CHAR

Finally we advance UNPRP to start working on UNPRB3 and re-load the second word from
our input buffer. This is a simple matter of masking off 000011111111 and storing in
UNPRB3.

So that’s three characters unpacked. What now?

31

Preparing to Return Single Characters

If you recall, our subroutine doesn’t return a pointer to a buffer: it returns one character
each time it’s called. So we need to hang onto our three-word UNPRB buffer and return
bits of it as needed.

TAD UNPRBA /RESET POINTER TEMP. BUF

DCA UNPRP

CLA CLL CMA RTL /-3

DCA UNPRCT /3 CHAR'S IN TEMP. BUF

First, we point our UNPRP back to the start of the three-character buffer, and set up UN-

PRCT with a -3 to start the countdown indexing into it.This rather clever CLA CLL CMA
RTL instruction is explained somewhat in the OPR section of this document.

ISZ UNPCNT /INPUTBUFFER EMPTY ?

JMP UNPGET /NO,GET CHAR NOW

If we still have buffer to get through, then it’s time to get and return one of our charac-
ters.

JMP UNPGET

UNPGET, ISZ UNPRCT /LAST FROM TEMP. BUF ?

IAC /NO,SET FLAG

DCA UNPRBF /YES RESET FLAG

We haven’t reached the end of our buffer yet, so we don’t skip the IAC instruction. That
means we increment the AC to 1 before writing it out to UNPRBF. So the flag is still show-
ing this read buffer as ready.

TAD I UNPRP /GET CHAR

ISZ UNPRP

ISZ UNPSGL /NORMAL EXIT

UNPEMT, ISZ UNPSGL

JMP I UNPSGL

We load our character into the AC and increment UNPRP to UNPRB2. We then hit the
UNPSGL parameter-handling logic.

Since we got this far, we’re returning a character in the AC. So we advance the UNPSGL
pointer past both the input buffer pointer and the “return buffer empty” handler instruc-
tion.

Second Call

OK, so we’ve done a lot of unpacking work to get three characters, but we’ve only re-
turned UNPRB1 so far. What about the other two? Let’s see what happens the second
time we call UNPSGL.

TAD UNPRBF /ARE THERE CHARS IN

SZA CLA /TEMP. BUFFER ?

JMP UNPGET /YES, GET ONE

The first thing we hit in this function is a test of UNPRBF, which sends us back to UNPGET.
So we skip all of the unpacking instructions and come back here:

UNPGET, ISZ UNPRCT /LAST FROM TEMP. BUF ?

IAC /NO,SET FLAG

DCA UNPRBF /YES RESET FLAG

32

TAD I UNPRP /GET CHAR

ISZ UNPRP

ISZ UNPSGL /NORMAL EXIT

UNPEMT, ISZ UNPSGL

JMP I UNPSGL

UNPRCT is -2 when we enter this, and demoting to -1 isn’t enough to skip the increment
of UNPRBF back to 1. We load UNPRB2 into the AC and advance UNPRP to UNPRB3 for next
time. Then we return back to the “character in AC address” from the caller.

Third Call

We haven’t cleared UNPRBF yet, so we’re back in UNPGET.

This time when we increment UNPRCT from -1 to 0 we skip the IAC and end up storing a
0 into UNPRBF. We load UNPRB3 and advance UNPRP past the end into invalid memory
before returning normally.

Fourth Character

Let’s assume we’ve been successfully reading triplets of characters for a while, and have
just finished as before but now we’re out of input buffer.

CLA CLL

TAD UNPRBF /ARE THERE CHARS IN

SZA CLA /TEMP. BUFFER ?

JMP UNPGET /YES, GET ONE

TAD UNPBEF /NO, INPUTBUFER EMPTY ?

SZA CLA

JMP UNPEMP /YES,RETURN END OF BUFFER

TAD UNPCNT /NO OR YES,MUST I

SNA CLA /START UP POINTERS ?

JMS UNPINI /YES, PLEASE DO

TAD UNPRBA /NO,JUST UNPACK NEXT WORDS

If UNPRBF is 0 because we’ve finished three characters, and UNPBEF is still 0 because our
input buffer still holds data, then we load UNPCNT and skip the initialisation and go
straight to the unpacking instructions.

Buffer Empty

But if UNPBEF had been incremented by the unpacking code reaching the end, then we’d
jump to UNPEMP:

UNPEMP, DCA UNPBEF /RESET FLAG

JMP UNPEMT /AND EMPTY BUFFER RETURN

This just clears UBPBEF before jumping to the end of UNPGET from before:

ISZ UNPSGL /NORMAL EXIT

UNPEMT, ISZ UNPSGL

JMP I UNPSGL

When we arrive this way, we only increment the return pointer for UNPSGL once past the
input buffer argument. So when we return, we’re returning to the instruction that indi-
cates the buffer was empty. This lets you JMP or ISZ some flag somewhere to let the rest
of your code determine what to do.

33

PACKB

This function appears in Volume 2 of the Cookbook, and is credited to Adri Hemelaar at
the same institute where Floor worked. By this point, PDP-8 hardware allowing more
than the basic 4k words of RAM was more available, and OS/8 was solidifying as a pop-
ular standard.

[IMAGE: ASCII and Binary files on OS/8 are packed with every third character inter-
leaved into the other two 12-bit words.]

OS/8 packed byte streams from teletype devices (such as paper tape readers) for its own
input buffers, but in a different layout to the previous examples. Bytes 1 and 2 would oc-
cupy their normal spaces in a pair of 12-bit words, but the remaining space would be
used to store 4-bit “nybbles” of the third byte.

/ PACK A CHARACTER IN A BUFFER IN OS/8 FORMAT

/ CAN BE USED FOR BUFFERS UP TO 31 PAGES

/ (NOT USING LAST PAGE OF FIELD)

/ PARAMETERS ARE:

/ CURFLD: FIELD OF SUBROUTINE

/ BUFFLD: FIELD OF BUFFER

/ BUFBEG, BUFEND: DEFINE SIZE OF BUFFER

/ CALL: TAD CHAR

/ JMS PACKB

/ BUFFER FULL RETURN(AC=0)

/ NORMAL RETURN (AC=0)

0 /TEMPORARY STORAGE

PACKB, .-.

DCA PACKB-1 /SAVE CHARACTER

TAD PACKSW /TEST PACKSWITCH

CDF BUFFLD

SZA

JMP PACKB1 /IF -2

TAD PACKB-1 /GET CHARACTER

DCA I PACPTR /INSERT IN BUFFER

TAD PACPTR

CLL RAR /IS POINTER ODD?

SNL CLA /SKIP IF YES

JMP .+4

CLA CLL CMA RAL /SET PACKSWITCH TO -2

DCA PACKSW

SKP

ISZ PACPTR /INCREMENT POINTER IF EVEN

JMP PACKB2 /GO TO EXIT

PACKB1, CLA CLL CMA

TAD PACPTR /DECREMENT POINTER

DCA PACPTR

TAD PACKB-1 /GET CHARACTER

RTL

RTL /SHIFT 4 POSITIONS TO LEFT

DCA PACKB-1 /SAVE TEMPORARY

TAD PACKB-1

AND C7400 /KILL BITS 4-11

TAD I PACPTR

34

https://archive.org/details/bitsavers_decpdp8ps8an_6136386

DCA I PACPTR /INSERT IN BUFFER

ISZ PACPTR /INCREMENT ADDRESS POINTER

ISZ PACKSW /INCREMENT PACKSWITCH

JMP PACKB1+3/AGAIN IF PACKSWITCH NONZERO

TAD PACEND

CMA CLL /TEST FOR BUFFER END

TAD PACPTR

SNL CLA /SKIP IF FULL

JMP PACKB2

TAD PACBEG /INITIALIZE POINTER

DCA PACPTR

SKP

PACKB2, ISZ PACKB /NORMAL RETURN

CDF CURFLD

JMP I PACKB

PACPTR, BUFBEG

PACKSW, 0

PACBEG, BUFBEG

PACEND, BUFEND

C7400, 7400

Parameters

This function dispenses with the TAD I/DCA/ISZ pattern of copying parameters in. In-
stead, it assumes that the input parameters are defined as symbols somewhere in your
code as global values.

It accepts a character in the AC, and lands you at the following instruction if the buffer is
full or the one after if everything’s normal.

Memory

First of all, this code uses .-. as the idiom for the return pointer placeholder value. This
is a visually distinct way to highlight a subroutine definition.This works because . ex-
pands to the current instruction address, and subtracting that from itself gets us a zero.

0 /TEMPORARY STORAGE

PACKB, .-.

DCA PACKB-1 /SAVE CHARACTER

TAD PACKSW /TEST PACKSWITCH

CDF BUFFLD

SZA

JMP PACKB1 /IF -2

The first instruction seems normal, saving the AC parameter in our temporary storage,
but what is this CDF instruction? Let’s consult the PDP-12 System Reference about Ex-
tended memory:

When additional 4096-word memory banks are attached to the PDP-12, the
Memory Extension Control provides access to the additional storage, both for
programs and data. The registers of the Control are already built into the
PDP-12...

Instruction Field Register (IF), 3 Bits
These three bits serve as an extension of the PC for determining the

35

4096-word field from which executable instructions are to be taken. All di-
rect memory references are made to registers in the Instruction Field. With
one exception, all JMP and JMS instructions, whether direct or indirect, are
to registers within the Instruction Field. The exception is the first JMP or
JMS executed after a CIF instruction is given. This causes the field to
change.

Data Field Register (DF), 3 bits
These three bits serve as an extension of the Memory Address register for
determining which memory field contains the operands to be accessed by
the memory reference instructions AND, TAD, DCA, and ISZ when indirect
addressing is used. The Data Field and Instruction Field may be set to the
same field.

[IMAGE: Field Instructions]

Memory Field Instructions

Mnemonic Octal Effect

CDF 62n1 The quantity n is transferred to the Data Field register. All
subsequent indirect memory references by AND, TAD, ISZ,
and DCA are to the new field.

CIF 62n2 The quantity n is transferred to the Instruction Field Buffer.
At the occurrence of the next JMP or JMS instruction,
whether direct or indirect, the contents of the IB are trans-
ferred to the IF. The effective address of the jump is placed
in the PC, and the program continues from that address in
the new Instruction Field.

RDF 6214 The contents of the Data Field register are ORed into AC6-8.
The other bits of the AC are unaffected.

RIF 6224 The contents of the Instruction Field register are ORed into
AC6-8. The other bits of the AC are unaffected.

RIB 6234 The contents of the Save Field register are transferred to the
AC as follows: Bits 0-2 (IF) are ORed into AC6-8; bits 3-5 (DF)
are ORed into AC9-11.

RMF 6244 The contents of the Save Field register are placed in the In-
struction Field Buffer and DF as follows: Bits 0-2 (original
Instruction Field) are transferred to the IB; bits 3-5 (original
Data Field) are restored to the Data Field register.

To make a long story short, these field registers let us switch among 8 “fields” of 4096
words of core, for code or memory-indirect data, or both.

So by changing our field to BUFFLD, which presumably is a 4096-word field of memory
set aside for OS/8 buffer data, we change the AND I, TAD I, DCA I, and ISZ I instruc-
tions to use that field instead of the current one.

Pack Switch

That was a lot to get into, so here’s a bit of retread:

TAD PACKSW /TEST PACKSWITCH

CDF BUFFLD

SZA

JMP PACKB1 /IF -2

36

TAD PACKB-1 /GET CHARACTER

DCA I PACPTR /INSERT IN BUFFER

So in order, we:

1. Read PACKSW into the AC

2. Change the memory-indirect data field to BUFFLD

3. Skip the JMP PACKB1 if PACKSW was 0

4. Load our character from temporary storage

5. Store it at PACPTR over in that BUFFLD field, thanks to the effect CDF had on DCA I.

So right out of the gate, we’ve written a character to the first word of our buffer, as
PACPTR starts out as BUFBEG.

First Character

TAD PACPTR

CLL RAR /IS POINTER ODD?

SNL CLA /SKIP IF YES

JMP .+4

CLA CLL CMA RAL /SET PACKSWITCH TO -2

DCA PACKSW

SKP

ISZ PACPTR /INCREMENT POINTER IF EVEN

JMP PACKB2 /GO TO EXIT

But now that we’ve written this, we check to see if the destination was odd or even.
We’ve seen that the way we pack three 8-bit values into two 12-bit words has an alternat-
ing pattern.

If the PACPTR is even, we fall through to the JMP .+4 which increments PACPTR to an
odd number and jumps to the exit code:

PACKB2, ISZ PACKB /NORMAL RETURN

CDF CURFLD

JMP I PACKB

This advances the return pointer to the normal return instruction in the calling code, and
restores the DF to CURFLD before JMPing back.

Second Character

But the next time through, PACKSW is still 0 but PACPTR is odd. That means it now runs
this:

CLA CLL CMA RAL /SET PACKSWITCH TO -2

DCA PACKSW

SKP

ISZ PACPTR /INCREMENT POINTER IF EVEN

It sets PACKSW to -2 and skips the increment of PACPTR, keeping it an odd address. So
now we’ve written a character in BUFBEG and another in BUFBEG+1. So far this isn’t
very well packed, so let’s see what happens the third time.

37

Third Character

PACKB1, CLA CLL CMA

TAD PACPTR /DECREMENT POINTER

DCA PACPTR

To start with, we work with the first character we stored in the buffer, at BUFBEG.

TAD PACKB-1 /GET CHARACTER

RTL

RTL /SHIFT 4 POSITIONS TO LEFT

DCA PACKB-1 /SAVE TEMPORARY

TAD PACKB-1

AND C7400 /KILL BITS 4-11

TAD I PACPTR

DCA I PACPTR /INSERT IN BUFFER

We took the four most-significant bits of our third character and put them in the space to
the left of our first character.

ISZ PACPTR /INCREMENT ADDRESS POINTER

ISZ PACKSW /INCREMENT PACKSWITCH

JMP PACKB1+3/AGAIN IF PACKSWITCH NONZERO

And now we go back with the second word and write the four least-significant bits to the
left of our second character. So our words now look like:

1. 333311111111

2. 333322222222

This is the OS/8 format, so we’re done packing.

Empty Buffers

TAD PACEND

CMA CLL /TEST FOR BUFFER END

TAD PACPTR

SNL CLA /SKIP IF FULL

JMP PACKB2

TAD PACBEG /INITIALIZE POINTER

DCA PACPTR

SKP

PACKB2, ISZ PACKB /NORMAL RETURN

CDF CURFLD

JMP I PACKB

We subtract PACEND from PACPTR and JMP to the normal exit if the result is still nega-
tive. Otherwise, we reset PACPTR to PACBEG and skip the “normal” return so that we
JMP back to the buffer-full-handling instruction in the original code.

UNPACK

/UNPACK CHAR BY CHAR FOR OS8 HANDLERS.

/ROUTINE UNPACKS AN OS8 FORMAT ASCII BUFFER CHARACTER

/BY CHARACTER. IT NEEDS A POINTER (CA) SET TO THE

/BEGINNING OF THE BUFFER, AND A WORDCOUNT (WC) SET

/TO - THE NUMBER OF WORDS IN THE BUFFER -1.

/THE LOCATION 'SETCDF' NEEDS TO BE SET TO THE FIELD

38

/WHERE THE BUFFER RESIDES.

/THE PACKSWITCH HAS 3 VALUES:0 FOR THE FIRST OF 3 CHARS.

/1 FOR THE SECOND, AND 2 FOR THE 3RD.

/THE PACKSWITCH SHOULD BE 0 WHEN ENTERED FOR THE FIRST

/TIME. THE ROUTINE LEAVES THE DATAFIELD TO THE FIELD

/OF BUFFER UPON EXIT. IF BUF EMPTY THEN JUMP TO 'XIT'.

PACKSW, 0 /0,1,OR 2

7400

377

UNPACK, .-. /ENTER WITH AC=0

SETCDF, CDF /OVERLAID

TAD PACKSW

RAR

SZL /1?

JMP UNP2 /Y

SZA CLA

JMP UNP3 /2

UNP1, TAD I CA

AND UNPACK-2

CLL RTR

DCA TEM /BYTE 3 ALREADY PARTLY PREPARED

TAD I CA

AND UNPACK-1

ISZ CA

ISZ PACKSW

ISZ WC /INCR. TWICE, EVERY 3 BYTES

JMP I UNPACK

C7600, 7600 /CLA

JMP XIT

UNP2, TAD I CA

AND UNPACK-2 /PREPARE 3RD BYTE

CLL RTR

RTR

RTR

TAD TEM

JMP UNP1+2

UNP3, DCA PACKSW /PREPARE FOR NEXT ENTRY

TAD TEM

JMP I UNPACK

TEM, 0 /SOMEWHERE IN THE HANDLER

CA, 0

WC, 0

	Table of Contents
	DECUS ET TUTAMEN
	Subroutines

	TYPTEX
	Comments
	JMS vs JMP
	Raw numbers
	TYPTEX, 0
	TAD I TYPTEX
	ISZ TYPTEX
	SNA
	JMS TYPE
	JMP TYPTEX+1
	Loop Analysis
	JMP I TYPTEX

	TYPE
	NOP
	JMP .+3
	TLS
	CLA, DCA, and Clues to the NOP Mystery
	Second Time Lucky
	TSF
	JMP .-1
	The Trouble With TSF

	PDP-8 Instructions
	Memory-addressing Instructions
	IOT
	OPR

	TYPTEX, Redux
	Locals, args, and return address
	Loop over TYPE

	PAL
	Installation
	Starting Your Project
	The PAGE Directive
	A Label, By Itself
	Semicolons
	EOF
	Build and Check
	Debug
	Run

	PRINTD
	Locals and arguments
	Setting up locals
	Dirty Tricks
	Printing the first digit
	Printing the Second Digit
	Printing the rest of the digits.

	Review
	Inline Arguments
	Copying Words
	Skip a JMP
	Negative Loop Index
	Self-modifying Code

	PRINT8
	RAL CLL
	RAL/RTL
	AND

	PACK
	Purpose
	PCKCNT
	Arguments
	Autoindexing
	Shift Left
	Shift Right

	Bitwise Operations
	The Third Character
	Buffer Limits

	UNPSGL
	Arguments
	Underflow Check
	JMS UNPINI
	Unpacking Character One
	Unpacking and Reassembling Character 2
	Unpacking Character 3
	Preparing to Return Single Characters
	JMP UNPGET
	Second Call
	Third Call
	Fourth Character
	Buffer Empty

	PACKB
	Parameters
	Memory
	Pack Switch
	First Character
	Second Character
	Third Character
	Empty Buffers

	UNPACK

