
N I C K M O F F I T T

M A K I N G S T O R Y G A M E S
W I T H P U N Y I N F O R M

Adventures in Text

But if you could talk straight to that imagination and cut out all the
senses, then. . . it would be impossible to ignore it. You couldn’t say,
“Oh, that’s just an image of a dragon.” That would be a dragon.
And if there was some kind of technology which could enable you to
talk straight to the imagination. . .

Well, there is: it’s called text. And it’s been around several thou-
sand years.

And I have seen people leap out of their chairs when a line has
said in front of them, “There is an immense fire-breathing dragon
here.”

Richard Bartle, interviewed in Get Lamp1 1 https://archive.org/details/getlam
p_bartle

In the 21st century, computer games are capable of astonishing
graphics. We can generate 3D virtual worlds to explore, and many
of these are works of art. But even the best equipment pales in
comparison to a reader’s imagination.

Whether you call them “text adventures” or “interactive fiction”2, 2 There is some debate over the
meaning of “Interactive Fiction”.
Some authors used the term to
try and suggest that they were
doing something more important
than simple adventure games. And
some use it now as a large category
that includes works that have no
“adventuring” inside. To avoid
conflict, we will call them “story
games” in this book.

the ability for your mind to fill in the most fantastic of details can
make simple typed-in text the most direct of interfaces. Story games
take text in from your keyboard, and use that to decide what text to
send back to you.

Players control story games by typing imperative commands, such
as go north or take the key. More advanced games may allow you
to set the controls for the heart of the sun or please put
the landlord hat on the landlord. The types of actions needed
to play a game are limited, but it can respond with paragraphs of
description that set the scene and lead players to imagine the world
their character inhabits.

https://archive.org/details/getlamp_bartle
https://archive.org/details/getlamp_bartle

The PunyInform Accelerator

Theorising that one could time travel within his own lifetime, Doctor
Sam Beckett stepped into the Quantum Leap accelerator and
vanished. . . He woke to find himself trapped in the past, facing
mirror images that were not his own, and driven by an unknown
force to change history for the better.

The opening narration to the television serial, Quantum Leap

Playing a story game can be slightly disorienting, at first. Players
find themselves inhabiting the perspective of a character they have
not had time to get to know. A game may begin in medias res,
which means “dropped into the middle of things”. Although you may
react with a surprised “oh boy. . . ”, do not give up: you can always
restart a game to try again, or save and restore attempts to play
through a tricky spot.

Building a story game can feel a little in medias res as well3, but 3 “Oh boy. . . ”

this book is here to help you. To begin with, you will need three
tools:

1. A “Z-Machine” interpreter, which plays story games in the format
invented by Infocom in the 1970s.

2. The Inform compiler, which turns source code you write into a
game playable on the interpreter.

3. The PunyInform library, which does the hard part of writing
Inform code to handle things that are common to nearly all story
games.

To install these tools on your computer, please refer to the refer-
ence card for your specific machine. But if you are just looking to
get started quickly, there is an easier option.

Borogove

The easiest way to get started is to use an online development tool
called Borogove. Just follow these steps:

1. Go to https://borogove.app
2. Under the Inform 6 card, select a new project using PunyIn-

form4. 4 As of this writing, the option says
PunyInform 3.6, but there may be a
new version out by the time you read
this.

3. When you’re ready to build and play your game, click the button
marked Go and explore it in the interpreter.

https://borogove.app

6 making story games with punyinform

If you’re just looking to explore, there is also an option to begin
with a Library of Horror example game. Feel free to play around
with it before moving on to the next chapter. We’ll be writing our
own story games, next.

Our First Leap

Figure 1: From the 1940s to the
1970s, people used computers
through teletypes. These were
noisy mechanical typewriters that
sent binary codes over wires or radio
waves. This was the type of device
that Will Crowther used to write a
game called Colossal Cave Adven-
ture on a PDP-10 computer, while
working at a company called BBN.

Some things to try:

• look at self
• look on the teletype
• take the transcript
• get office
• get teletype

8 making story games with punyinform

• inventory
• drop transcript
• put the transcript on the teletype
• get all
• go east
• read transcript

Your first mission is to go back in time to 1975, and read a tran-
script of what we believe is the very first story game ever made with
a computer. To do this, open a new PunyInform project and replace
any source code you may already have with the following:

Constant Story "BBN";
Constant Headline "ˆMission for Colossal Cave.ˆ";
Constant INITIAL_LOCATION_VALUE = Office;

Include "globals.h";
Include "puny.h";

[Initialise;
"Stepping into the PunyInform Accelerator, you vanish into

another life, and another time...";
];

Object Office "Your Office"
with

description "This is the quiet office where you wrote
Colossal Cave Adventure, while coming to terms with the
divorce that estranged you from your caving group.",

has light;

Object -> teletype "ASR-33 TeleType"
with

name 'asr-33' 'asr33' 'teletype',
description "This is a model ASR-33 teletype. It's an

electric typewriter, connected by wires to the PDP-10
down the hall.ˆIt has a paper tape puncher/reader to
store data for later, and everything the computer has
displayed is left printed in block capitals on an
endless spool of paper.",

has static supporter;

Object -> -> transcript "game transcript"
with

name 'printout' 'game' 'transcript',
description "This is what you came for: a printout of an

early game of Colossal Cave Adventure your kids played
with you. It is currently at a particularly descriptive
section:ˆ~YOU ARE IN A SPLENDID CHAMBER THIRTY FEET
HIGH. THE WALLS ARE FROZEN RIVERS OF ORANGE STONE. AN

our first leap 9

AWKWARD CANYON AND A GOOD PASSAGE EXIT FROM EAST AND
WEST SIDES OF THE CHAMBER.~",

after [; Examine: deadflag = GS_WIN;];

Go ahead and play around with the game for a bit. There is only
one room and a couple of objects, so you can see it all very quickly.
We’ve included some suggestions for things to try in the sidebar on
the right.

Once you’ve explored how the game works, it’s time to look at
how we made it.

Source Code

The text you pasted in is written in the Inform 6 language5. It has a 5 Pay close attention to the punctu-
ation and capitalisation: the little
details can make a big difference!
Look for semicolons (;), commas (,)
and both types of inverted commas
(' and ").

lot of special words, which are shown in bold. There is also lots of
text the game will listen for or print out, which is underlined.

Let’s look at each section, and find out what it does.

Constant Story "BBN";
Constant Headline "ˆMission for Colossal Cave.ˆ";
Constant INITIAL_LOCATION_VALUE = Office;

The first section defines constants6, which link names to values 6 But don’t forget that Constant
must have a capital C!that cannot change while the game runs. Here we name the game,

and tell it to start in the Office.

Did you notice the use of ˆ in the Headline string? Those are
turned into newlines, so the Headline is printed on a line of its
own. We’ll talk more about this later.

When we surround text in " characters, we call that a string.
Strings are pieces of text that we can print out during the game.

Include "globals.h";
Include "puny.h";

This next section loads in PunyInform, by including two files.
The first one, named with the string "globals.h", has lots of Con-
stants like the ones you set earlier. The second file, "puny.h", loads
in all of the PunyInform code to let you explore the world you’re
about to create.

[Initialise;
"Stepping into the PunyInform Accelerator, you vanish into

another life, and another time...";
];

Inform requires every game to have a special routine called
Initialise7. A routine is a way of packaging up instructions to 7 Americans may be tempted to

write this as “Initialize”. Inform was
written in Oxford, UK, so we often
need to use British spelling!

make them easier to use later. Fortunately, Inform will understand
that a string, on its own in a routine, means that we want to dis-
play the text to the player and finish the routine successfully.

10 making story games with punyinform

Object Office "Your Office"
with

description "This is the quiet office where you wrote
Colossal Cave Adventure, while coming to terms with the
divorce that estranged you from your caving group.",

has light;

The world we explore in our game is made of objects. Every-
thing from items you can hold, to rooms you can walk through, and
even the player, are all defined with the Object statement.

Each object has two names:

1. The word used to name it in your code88 For this game, we have decided to
capitalise the code names for rooms,
but leave other objects in lower-case.

2. The name that is displayed to the player

So we have a room referred to as Office, which is what we put
in the constant called INITIAL_LOCATION_VALUE. This means our
player will begin the game standing in a room which displays its
name as “Your Office”.

The words property and attribute sound like they should mean
the same thing, don’t they? In Inform, a property in an object has
a value, which you can set to data or code. An attribute is just a
tag that an object either has or hasnt!

We used the with statement to give this room a description
property, which is a string that is displayed when the player uses
the look command while standing inside the room.

We also used the has statement to give it an attribute called
light, which means the look command won’t just tell the player
that it is pitch dark.

Object -> teletype "ASR-33 TeleType"
with

name 'asr-33' 'asr33' 'teletype',
description "This is a model ASR-33 teletype. It's an

electric typewriter, connected by wires to the PDP-10
down the hall.ˆIt has a paper tape puncher/reader to
store data for later, and everything the computer has
displayed is left printed in block capitals on an
endless spool of paper.",

has static supporter;

Our next object is the teletype. The -> means that it will start
the game located in the room we just defined.

In addition to the description property, we added a name
property, with three words. When we surround words with '
characters, we call that a dictionary word. This means that the
game can understand these words when the player types them in.
So the player can refer to this object as teletype or asr33 if they
want.

our first leap 11

We also gave this object two attributes:

1. static, which means the player can not pick it up.
2. supporter, which means that other objects may be placed on top

of it.

Object -> -> transcript "game transcript"
with

name 'printout' 'game' 'transcript',
description "This is what you came for: a printout of an

early game of Colossal Cave Adventure your kids played
with you. It is currently at a particularly descriptive
section:ˆ~YOU ARE IN A SPLENDID CHAMBER THIRTY FEET
HIGH. THE WALLS ARE FROZEN RIVERS OF ORANGE STONE. AN
AWKWARD CANYON AND A GOOD PASSAGE EXIT FROM EAST AND
WEST SIDES OF THE CHAMBER.~",

after [; Examine: deadflag = GS_WIN;];

Did you notice the use of ~ in the description? Tildes are
turned into " when printed, because we can’t put " in our strings
without ending them. Again, we’ll talk more about special string
characters later.

The last object is the transcript, which is used to win the
game. We used the double arrows -> -> to state that it begins the
game located in the most recently-defined object that is inside a
room. Since in our case that is the teletype, and the teletype is
defined with has supporter, that means the transcript is on the
teletype.

The final line of the game is the one that lets you win. It has a lot
of punctuation, so here is just that line in a friendlier format:

Object transcript
with

after [;
Examine:

deadflag = GS_WIN;
];

Good story games anticipate what the player will try. Many
players get frustrated when a word that makes sense to them isn’t
recognised by the game. PunyInform tries to link common verbs
together so that read and look at are the same as examine.

We’ll show you how to avoid “guess the verb” in your own games,
later on.

We have given this object a property called after. This looks
a bit like the routine we defined at the top, but it has no name
between the [and the first ;. The Inform code we put here will be
sent a message every time PunyInform finishes successfully letting
the player do something with the transcript. The message will be

12 making story games with punyinform

the verb the player used on the transcript.

In this case, we want the game to be won after the player has
read this object’s description. The game ends when a spe-
cial variable, called deadflag, is changed from 0 to something
else. Here we say that after the player successfully finishes using
Examine on the transcript, we will set deadflag to the constant
GS_WIN9. This will tell PunyInform to congratulate the player for a9 The value of GS_WIN happens to be

2, in case you’re curious! game well-played!

A Larger World

Figure 2: A map of the rooms for our
small game.

There are many brilliant games that use only one room, but most
story games involve exploring a map of interconnected locations.
We tend to sketch these maps out on paper with boxes representing
rooms, and the paths between them as lines.

The player types compass directions to move from room to room.
This is such a common thing to do that go east may be entered as
east, or even simply e.

Our second game will be set in the same building, but with more
rooms and a bit of a puzzle to solve. We’ll take a look at it in pieces.

Notice that Statusline score; could have been on a line of its
own. The semicolon (;) separates lines of Inform code.

Constant Story "IMP";
Constant Headline "ˆAn ARPANET quest.ˆ";
Constant STATUSLINE_SCORE; Statusline score;
Constant OPTIONAL_SCORED;
Constant INITIAL_LOCATION_VALUE = ServerRoom;

Include "globals.h";

14 making story games with punyinform

Include "ext_cheap_scenery.h";
Include "puny.h";

[Initialise;
"The crackling energy of the leap subsides, and you blink

your eyes as you get your bearings in a new situation.";
];

Cheap Scenery

We’ve added some Constants to keep track of the player’s score,
and added this score to the status line. We have also Included an
extension for “cheap scenery”.

Remember when we said that good games anticipate what the
player will try? Well, one thing that can frustrate players is when
they try to examine something that was mentioned in a room’s
description, only to be told that it does not exist! A polished
game should describe as many words as possible.

Unfortunately, we have a limited number of objects we can
create10. If we gave each “scenery” word an object with a10 PunyInform can produce three

different sizes of game. The smallest
of these, which can be played on the
widest variety of computers, can only
hold 255 objects.

description and has static, our game would become very large
and run out of objects for rooms and items.

PunyInform comes to our rescue with the “cheap scenery” exten-
sion! This lets us give our room a cheap_scenery property which
takes two dictionary words and one string. When the player tries
to examine either of the words, the descriptive string is displayed.

Note that we defined a new constant to store the string that
describes the PDP-10 computer. This let us make two entries in
cheap_scenery that share the same long string.

We can now use any of four words to refer to the PDP-10, but
kept our game size down.

Note that the final comma indicates the end of the
cheap_scenery data. Each “cheap” description is separated
with spaces or a new line.

Constant PDP_10 "This is the computer your group is using to
develop the ARPANET. It is the size of three or four
refrigerators, and covers one wall.ˆUnfortunately, it isn't
much use with the IMP offline.";

Object ServerRoom "BBN Server Room"
with

description "The din of cooling fans reverberates off the
metal racks of computer equipment. One wall is covered
by an enormous PDP-10 computer system, and the other by
the ARPANET IMP.",

a larger world 15

cheap_scenery
'cooling' 'fans' "Transistors are much cooler than

thermionic valves, but the heat from all this equipment
must still be vented off with forced air coming from
the raised floor."

'metal' 'racks' "Each computer in this room takes at
least four square metres of floor space, housed in
industrial metal cabinets."

'noise' 'din' "The cooling fans make such a loud,
whooshing, whirring noise. It's really not healthy to
stay in here for too long without ear protection!"

'pdp-10' 'pdp' PDP_10
'computer' 'system' PDP_10
'internet' 'arpanet' "The IMP breaks data into

~packets~, which it can send around the ARPANET, and
reassemble from other IMPs. It's very clever, and some
day all business will be conducted over a network like
this."

'substantial' 'lock' "The IMP's power switch is behind a
military-grade lock, which requires a heavy metal key
to operate.",

e_to Hall,
has light;

In addition to all of the description properties, we have a new one:
e_to. In this case, that means that when the player is standing in
the ServerRoom object, they can type go east, east, or even just
e, to move to the Hall object.

Switching Objects On and Off

We have also given the imp two new description properties:
when_on and when_off. These are special descriptions for any ob-
ject that has switchable.

The when_off description will be displayed when the imp is
switched off and the ServerRoom’s description is printed.

Would when_on ever be printed?

Object -> imp "Interface Message Processor"
with

name 'imp' 'arpanet' 'router',
description "The IMP is a special-purpose computer that

breaks data up into ~packets~ to send over a new internet
called The ARPANet.ˆThere are now 110 computers you can
connect to!ˆˆOr at least, you could if the thing were
turned on...",

when_on "The IMP hums away happily, routing packets.",
when_off "The IMP is currently off, which means no one can

receive any e-mail from outside right now.",

16 making story games with punyinform

Figure 3: An IMP next to a teletype.
The IMP was a special network-
ing computer used to develop the
ARPANET.

a larger world 17

with_key impkey,
before [;

SwitchOn:
if (self has locked)

"Unfortunately, the IMP's power switch is protected
with a substantial lock";

],
after [; SwitchOn: deadflag = GS_WIN;],

has static lockable switchable locked;

Note that the cheap_scenery describing aspects of the
IMP is listed in the the ServerRoom object. That is because
cheap_scenery belongs in the location where the player is when
they type examine.

The imp object begins with some familiar properties:

• The -> places it in the ServerRoom
• It has a description string that uses ~ for inverted commas11 11 Often called “quotation marks” or

“speech marks” in the US.and ˆ for newlines.

But the imp isn’t just an inert piece of scenery. It is a machine
that can be switched on and off, provided that it has been unlocked.
That’s why it has static lockable switchable locked.

The goal of this game is to switch it back on. Just as in the last
chapter, we define a routine for the after property. This one
reacts to the SwitchOn message, such as when a player tries turn on
imp, by declaring the game won.

Locks

So how do we prevent the player from turning it on while it’s still
locked? To do this, we need to step in before the SwitchOn action
succeeds. So we define a routine in the before property12 that 12 We will use before and after a

lot. Just remember that after only
runs after an action has succeeded.
The before property can decide
whether or not the action takes
place.

responds to the SwitchOn message.

Our routine makes a choice:

• If the IMP is locked, it will end the action with a message that
describes why it failed.

• Otherwise, it will do nothing, and allow the normal SwitchOn
action to proceed.

The statement if (self has locked) "..."; prints the string
and exits if the object13 has the locked attribute. Since un- 13 The special object name self

refers to whatever object the rou-
tine is a property of. This lets
us re-use routines the same way
we re-used that PDP-10 description
string.

locking an object removes that attribute, we can stop here. The
unlocked object will not pass the if test, so the player can switch it
on.

But how does the player unlock the imp? We have set a special
property, called with_key, to the object14 that the player can use 14 We specified that the imp lock can

be opened with impkey. Until we
define an impkey object, we won’t
be able to build this game. Instead,
we will get an error message: No
such constant as "impkey".

to unlock the imp.

18 making story games with punyinform

Another Room

Players expect pathways to work both ways. If the Hall is east of
the ServerRoom, then we need to let the user go west to get back. So
we’ve added the w_to ServerRoom.

This hallway is a central “branching-off point” that connects to
many other rooms. We’ll define those rooms later, but building the
game will produce an error until we have.

We gave the ServerRoom an exit east toward a room called Hall.
Let’s make that room now.

Object Hall "Hallway"
with

description "You are in a hallway in the BBN offices in
Cambridge, MA. To the west is a noisy server room, a
storage closet is to the south, and your office lies to
the east.",

w_to ServerRoom,
s_to Closet,
e_to Office,

has light;

Now let’s put a broken vending machine in the hallway. If the
player has the vmkey object,

Object -> vending "Vending Machine"
with

name 'vending' 'machine' 'soda',
description "This is a large soda machine. It has a large

~OUT OF ORDER~ light.",
with_key vmkey,

has static openable lockable locked container;

Note that we’ve turned the describe property into a routine.
This lets us return a different description depending on the position
of the switch.

This is similar to the lock we gave the imp: we test if (self
has on) to return the lit description, and otherwise return the unlit
description.

We’ve also given the torch a scored attribute. This will make
the player’s score go up by 4 points when they take it. Scores in
story games are less about a player’s skill, and more an indication
that the game is on the right track. When the player’s score goes up,
that means they’ve advanced the plot in some way.

Now let’s create an electric torch, which is a switchable object
that provides light when it’s on.

Object -> -> torch "electric torch"
with

a larger world 19

name 'electric' 'torch' 'flashlight',
describe [;

if (self has on)
"ˆThe torch projects a weak circle of light.";

"ˆThe torch is switched off.";
],
after [;

SwitchOn: give self light;
SwitchOff: give self ~light;

],
has switchable scored;

The after property lets us react to the SwitchOn and
SwitchOff messages, using give self to change the torch to
either has light or hasnt light. If an object has light, then the
player can see objects and descriptions even if the current room is
dark.

We’ll make a dark room next.

We’ve given Closet the scored attribute. This means that the
player will gain 5 points when they first see the room’s description.

Since we left out has light, this room is dark. The score can’t
increase until the torch lights it.

Object Closet
with

description "A storage closet, but unfortunately the lights
have gone out.",

n_to Hall,
has scored;

Object -> impkey "heavy metal key"
with

name 'heavy' 'metal' 'key',
description "This is a solid metal key on a stout chain.",

has scored;

Now we have an idea of how to play through the game:

1. Get the vending machine key.
2. Unlock the vending machine.
3. Open the vending machine.
4. Take15 the torch. 15 Some players use take torch,

while others prefer get torch. Which
one do you use?

5. Switch on the torch.
6. Take the IMP key.
7. Unlock the IMP.
8. Switch on the IMP.

But we haven’t made the vending machine key. Let’s do that now.

Object Office "Your Office"

20 making story games with punyinform

with
description "This is the quiet office where you wrote Colossal

Cave Adventure.",
cheap_scenery

'asr33' 'teletype' "This is a model ASR-33 teletype. It's
an electric typewriter, connected by wires to the
PDP-10 down the hall.ˆIt has a paper tape
puncher/reader to store data for later, and everything
the computer has displayed is left printed in block
capitals on an endless spool of paper.",

w_to Hall,
has scored light;

Object -> vmkey "round key"
with

name 'round' 'key',
description "This is a cylindrical key on a lanyard.",

has scored;

	Adventures in Text
	The PunyInform Accelerator
	Borogove

	Our First Leap
	Source Code

	A Larger World
	Cheap Scenery
	Switching Objects On and Off
	Locks
	Another Room

